
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009
727

LETTER

Solid-State Disk with Double Data Rate DRAM Interface for
High-Performance PCs

Dong KIM†, Kwanhu BANG†, Seung-Hwan HA†, Chanik PARK††, Sung Woo CHUNG†††, Nonmembers,
and Eui-Young CHUNG†a), Member

SUMMARY We propose a Solid-State Disk (SSD) with a Double Data
Rate (DDR) DRAM interface for high-performance PCs. Traditional SSDs
simply inherit the interface protocol of Hard Disk Drives (HDD) such as
Parallel Advanced Technology Attachment (PATA) or Serial-ATA (SATA)
for maintaining the compatibility. However, SSD itself provides much
higher performance than HDD, hence the interface also needs to be en-
hanced. Unlike the traditional SSDs, the proposed SSD with DDR DRAM
interface is placed in the North Bridge which provides two or more DDR
DRAM interface ports in high-performance PCs. The novelty of our work
is on DQS signaling scheme which allows arbitrary Column Address Strobe
(CAS) latency unlike typical DDR DRAM interface scheme. The experi-
mental results show that the proposed SSD maximally outperforms the tra-
ditional SSD by 8.7 times in read mode, by 1.5 times in write mode. Also,
for synthetic workloads, the proposed scheme shows performance improve-
ment over the conventional architecture by a factor of 1.6 times.
key words: SSD (Solid-State Disk), NAND flash, North Bridge, DRAM
interface

1. Introduction

SSD is a massive storage device based on NAND Flash
memories. It is gradually replacing mechanical HDDs
thanks to its non-volatile, low-power, silent, and shock-
resistant features in mobile and desktop PCs. Compared to
HDDs, the major disadvantage of SSD is its cost. However,
its cost is rapidly decreasing, since NAND Flash memory
technology is continuously evolving. Over the past decade,
the density of NAND Flash memory has doubled on every
12 month according to Hwang’s law, hence SSD will lead
the massive storage market in the near future. Even though
modern SSDs outperform HDDs, many research works con-
tinue to pursue further increases in their performance from
the architectural perspective. Lee et al. proposed a new
NAND Flash memory package with smart buffer cache for
exploiting the spatial and temporal localities [1]. Park et
al. proposed an energy aware demand paging using Clean
First LRU algorithm which minimizes the number of write
or erase operations [2]. Kang et al. proposed a multi-channel
architecture using I/O parallelism such as striping, interleav-
ing and pipelining [3]. The authors in [4] introduced a flash
memory controller having a dedicated datapath between the

Manuscript received July 15, 2008.
Manuscript revised November 28, 2008.
†The authors are with Yonsei University, Seoul, Korea.
††The author is with Samsung Electronics Co. Ltd., Kyeonggi,

Korea.
†††The author is with Korea University, Seoul, Korea.
a) E-mail: eychung@yonsei.ac.kr

DOI: 10.1587/transinf.E92.D.727

host interface and NAND Flash memory interface. Also, the
authors in [5] enhanced data throughput using multi-channel
and way interleaving schemes. However, all of these works
focused on the internal architecture of SSD. On the con-
trary, we focus on the interface scheme of SSD, since it
would be a performance bottleneck according to Amdahl’s
law when the internal architecture of SSD is continuously
improved. Table 1 shows a summary of high-performance
interface schemes which are recognized as future SSD inter-
face candidates in industry. Among those interface schemes,
DDR DRAM interface delivers the highest bandwidth in the
same generation. For this reason, we investigate an SSD
with DDR DRAM interface for high-performance PCs in
this work. The interface is well tailored to an SSD for arbi-
trary length of burst data transfer with arbitrary CAS latency
which are not necessary for conventional DDR DRAMs.
Such an enhanced SSD greatly improves the PC perfor-
mance when it transfers massive data to and from the SSD.

2. Internal Architecture of SSD

A typical SSD architecture is shown in Fig. 1. It consists of a

Table 1 Storage interfaces (Unit: MB/s).

Interface Organization 2001 2005 2007 2009˜ Ref.

SATA SATA-IO 150 300 - 600 [6]
DDR DRAM (x64) JEDEC 3200 8500 16000 25600 [7]

PCI-E (x16) PCI SIG 4000 - 8000 16000 [8]
USB USB-IF 1.5 60 - 600 [9]
SAS SCSITA 150 300 600 1200 [10]

Fibre Channel (B2) FCIA 400 800 1600 3200 [11]

Fig. 1 SSD internal architecture.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



728
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

processor, NAND Flash interface, NAND Flash memories,
SRAM, DRAM interface, DRAM and a host interface. A
processor controls the overall system and a firmware called
Flash Translation Layer (FTL) is running on it for wear-
leveling. The NAND Flash interface can support multiple
channels and ways to increase read/write throughput. The
DRAM is utilized as a cache buffer in order to achieve a
higher performance. In other words, the data read time from
the SSD critically depends on whether the cache hit occurs
or not. Finally, the host interface is a communication path
between the PC and the SSD.

3. Conventional PC Architecture with SSD

3.1 Overview

Figure 2 (a) shows the block diagram of a conventional
80x86 PC architecture. High-speed peripherals including
DRAMs are connected to North Bridge, while slow periph-
erals including SSD are connected to South Bridge. Data
transfer to (from) an SSD is initiated by the CPU and the
source (destination) of data is DRAM located in North
Bridge. Read and write operations for an SSD consists of
several sub-operations defined in Table 2. The details of
read and write operations are described in the following sec-
tions.

3.2 Read Operation

Read operation is defined as the data transfer from an SSD
to the main memory (DRAM). For read, the CPU issues a
DMA read command to the SATA controller in South Bridge
(Operation A). Then the DMA in SATA controller receives
the first packet including data ID from the SSD through the

Fig. 2 PC architecture with an SSD: (a) Conventional architecture.
(b) Enhanced architecture.

Table 2 DMA transfer time.

Operation Description

A DMA command CPU issues a DMA command
B PRD fetch Read the physical memory region
C SSD internal SSD internal read/write transfer
D SSD interface SSD interface read/write transfer
E Memory access Memory access to or from SSD

SSD interface (Operation C and D). The SATA controller
analyzes the first packet to fetch the data transfer size and
the starting address from the Physical Region Descriptor
(PRD) table in the main memory (Operation B). According
to the information, the DMA in SATA controller transfers
data appropriately from the SSD to main memory (Opera-
tion E). The operation sequence ‘C→D→B→E’ is repeated
until when the requested size of data is completely trans-
ferred. At the end of the DMA transfer, the SSD signals
an interrupt and then read operation is completed. Note that
the DMA read operation is performed in a pipelined fashion.
For instance, when there are two consecutive read opera-
tions, the second read operation is started right after the data
requested by the first read operation is delivered to South
Bridge. Hence the delay due to the bridges is hidden by the
next read operation.

3.3 Write Operation

Write operation is also initiated by a DMA command issued
from CPU (Operation A). Then the SATA controller fetches
the starting address and the size of the data to be transferred
from the PRD table in main memory (Operation B). With
the information, the DMA in SATA controller fetches the
data from the main memory (Operation E) and then trans-
fers data appropriately from the main memory to the SSD
in the order of Operation D and C. The operation sequence
‘B→E→D→C’ is repeated until when the requested size of
data is completely transferred. At the end of the DMA trans-
fer, the SSD signals an interrupt and then write operation
is completed. Unlike read operation, the write operation is
performed in a sequential manner in our design. When there
are two consecutive write operations, the second write oper-
ation is started only after the first write operation completely
writes the data to the NAND Flash memories in the SSD.
Thus, the delay due to bridges is transparently reflected to
the write performance. Note that the sequential operation
in write mode is for protecting write failure. The SSD may
lose the first data when it is written to a bad block, if the
write operation is performed in a pipelined fashion.

3.4 Performance Limiting Factors

A traditional SSD replaces a HDD while keeping the same
interface protocol for compatibility. Apparently, this archi-
tecture is not suitable to provide the expected performance
when massive data is written to or read from the SSD for
two reasons. First, every access to SSD has to pass through
two bridges (North and South Bridges) meaning that the
request for SSD needs to be arbitrated twice. Second, the
maximum bandwidth of PATA (SATA2) is 133 (300) MB/s,
hence the interface may become a bottleneck due to its in-
sufficient bandwidth. The enhanced PC architecture in the
next section resolves such issues for higher data throughput.



LETTER
729

4. Enhanced PC Architecture with SSD

4.1 Overview

The block diagram of the enhanced PC architecture is shown
in Fig. 2 (b). The SSD is connected to North Bridge through
the DDR DRAM interface. The major advantages of this
architecture are two folds. First, DDR DRAM interface
provides higher bandwidth than SATA interface. Second,
South Bridge is eliminated in a data path between main
memory and SSD, hence the arbitration overhead is re-
duced. By eliminating the South Bridge, the following
changes are required. The SATA controller is no longer nec-
essary, while the DRAM controller is extended for support-
ing the proposed SSD. CPU issues a DMA command to
the DRAM controller in North Bridge, PRD fetching and
the data transfer between DRAM and SSD are also per-
formed by DMA in DRAM controller. In case of read op-
eration, transfer operation sequence is ‘A→C→D→B→E’.
And the operation sequence ‘C→D→B→E’ is repeated to
complete data transfer. In write operation, the operation
sequence is ‘A→B→E→D→C’. The operation sequence
‘B→E→D→C’ is repeated as in read operation.

4.2 DDR DRAM Interface Tailored to SSD

The major challenge in this architecture is to tune the typical
DDR DRAM interface to SSD from two aspects. First, typ-
ical DDR DRAMs have a fixed CAS latency meaning that
the data is available on the data pins after a fixed number
of clock cycles in read mode. On the contrary, the data re-
sponse time of SSD is not a constant, since it has a cache
buffer which greatly reduces the response time when the
cache hit occurs. Second, it is necessary to convert the size
of data to be transferred in the unit of burst length which is
the basic unit of data transfer in DRAM.

To tackle the CAS latency issue, we introduce a DQS
signaling scheme. DQS is a feedback clock defined in DDR
DRAM standard protocol for the easy synchronization of
data from the storage. In our scheme, DQS is asserted by
SSD to inform the host machine (PC) of the data availabil-
ity. Figure 3 shows how DQS signaling scheme controls
the variability of data response time. Figures 3 (a) and (b)
show DQS behavior when the cache hit occurs and when the
cache miss occurs, respectively. More precisely, the asser-
tion of DQS is delayed until when the data is fetched from
the NAND Flash memories if the cache miss occurs.

As far as data size conversion is concerned, the DMA
in DRAM controller imitates the DMA in the SATA con-
troller of the conventional architecture. In conventional
architecture, the DMA divides the size of the data to be
transferred by the sector size yielding the quotient repre-
senting the number of data transfers. Similarly, the DMA
in DRAM controller of the enhanced architecture uses the
same method except replacing the sector size by the burst
length. Burst length 4 and 8 are commonly supported by

Fig. 3 Timing diagrams of an SSD: (a) When cache buffer read hit occurs.
(b) When cache buffer read miss occurs.

DDR1, DDR2, and DDR3 standard protocols, hence either
burst length can be used as the basic data transfer unit in the
enhanced architecture.

5. Experimental Results

To show the effectiveness of our method, we modeled two
transaction-level PC architectures with SystemC [15] based
on the specification in [12] and [13], respectively. One is
a conventional architecture with a SATA interfaced SSD
as shown in Fig. 2 (a) and the other is the PC architecture
with the proposed SSD as shown in Fig. 2 (b). To maxi-
mally exploit the performance of each interface, we set the
interface bandwidth of SATA and DDR DRAM interfaces
as 300 MB/s (SATA2) and 6400 MB/s (DDR2-800), respec-
tively. Note that these values are the maximum bandwidth
allowed in their specifications. Other system specifications
of both architectures are identical for a fair comparison. Fi-
nally, we modeled the SSD according to the specification in
[14]. We measured the data response time of both systems
when the host transfers a page of 64 KB to and from an SSD
by simulating two models.

In read mode, we performed the experiments for two
extreme cases. The first case represents that every access to
an SSD causes a cache miss, while the other case represents
100% of cache hit. As shown in Figs. 4 (a) and (b), the per-
formance improvement ratios of both cases are 1.16 and 8.7,
respectively. Such difference comes from the source of data.
In case of 100% of read miss, every data is read from NAND
Flash memory which is much slower than the cache buffer.
Thus, the impact of interface improvement is marginal com-
pared to the case of 100% of cache hit. Even in the worst
case (100% of cache miss), the proposed architecture out-
performs the conventional architecture by 16.20%, which is
mainly due to the reduction of the SSD interface overhead.

In write mode, the performance improvement ratio of
the proposed architecture is 1.50 as shown in Fig. 4 (c),
which is greater than the performance improvement ratio in



730
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

Fig. 4 64 KB DMA transfer: (a) Cache buffer read miss. (b) Cache buffer
read hit. (c) DMA write.

Table 3 Utilized bandwidth of each interface.

Operation Conventional I/F Enhanced I/F

Write 35.96 MB/s 45.68 MB/s
Cache read miss 50.03 MB/s 57.97 MB/s
Cache read hit 296.53 MB/s 3175.19 MB/s

read mode with 100% of cache miss. The result is closely
related to the elimination of South Bridge in the proposed
scheme. In write mode, the data is fetched from the DRAM
and then written to the NAND Flash memories inside an
SSD. The reverse action is performed in read mode. How-
ever, there is a big difference such that the write operations
are performed in a sequential manner, whereas the read op-
erations are performed in a pipelined fashion as mentioned
in Sect. 3. To summarize, the elimination of South Bridge is
more beneficiary to the write operation due to its sequential
operational property.

We also measured the utilized bandwidth of each inter-
face as shown in Table 3. In case of write or cache read miss,
both SSDs show similar utilized bandwidth. However, when
a read cache hit occurs, the SSD with DDR DRAM interface
utilizes much higher bandwidth than the SSD with SATA
interface by a factor of 11. More importantly, SATA inter-
face is almost saturated, while DDR DRAM interface can
still manage the required bandwidth. In other words, SATA
interface shows 98.84% of bandwidth utilization meaning
that the system performance is limited due to its insufficient
bandwidth. On the other hand, DDR DRAM interface uti-
lizes 49.61% of its maximum bandwidth. This result show
that the host interface of the conventional SSD can be a per-
formance bottleneck even in contemporary PC architecture.
Also, other interface schemes shown in Table 1 except PCI-
E (×16) do not satisfy the maximum bandwidth (when 100%
cache read hit) required by SSD even in contemporary PC
architecture. Hence, we expect that DDR interface and PCI-
E (×16) would be strong candidates of future SSD interface,
since the internal architecture of SSD is continuously im-
proved to maximize its internal throughput.

Finally, we evaluated the proposed interface scheme
for real workload which was popularly used for SSD per-

Fig. 5 Evaluation of the typical programs.

formance evaluation [16] and the trace can be downloaded
from [17]. It is a trace collected by executing several appli-
cations (web surfing, email transfer, movie playing, down-
loading, document typing and gaming) on Windows XP. As
shown in Fig. 5, the proposed architecture outperformed the
conventional architecture by a factor of 1.6. Such improve-
ment ratio is strongly correlated to the transaction mix of the
trace. More specifically, 52% of the transactions in the trace
is write, while the remaining portion (48%) is read. Also,
97.65% of read transactions incurs cache misses, hence the
performance improvement ratio of the proposed architecture
was limited to 60% over the conventional architecture. It
is expected that our architecture can achieve larger gain by
increasing the cache buffer size with more sophisticated re-
placement policy.

6. Conclusions

As the price of NAND Flash memories is decreasing, the
demand for high performance SSDs will increase. How-
ever, the conventional SSD interface scheme can be a per-
formance bottleneck of a high performance SSD. The pro-
posed interface scheme shows the significant performance
improvements in both write and read modes of an SSD. The
experimental results showed that the proposed SSD maxi-
mally outperforms the traditional SSD by 8.7 times in read
mode, by 1.5 times in write mode. Also, for synthetic work-
loads, the proposed scheme shows performance improve-
ment over the conventional architecture by a factor of 1.6
times. Furthermore, the impact of our improvement will be-
come larger as SSD itself becomes faster as shown in the
experimental results of two extreme read cases.

Acknowledgement

This work was supported in part by Samsung Electronics
Company and Korea Research Foundation Grant funded
by the Korean Government (MOEHRD) KRF-2007-313-
D00578.

References

[1] J.-H. Lee, G.-H. Park, and S.-D. Kim, “A new NAND-type flash



LETTER
731

memory package with smart buffer system for spatial and temporal,”
J. Syst. Archit., vol.51, pp.111–123, Feb. 2005.

[2] C. Park, J. Kang, S.Y. Park, and J. Kim, “Energy-aware demand
paging on NAND flash-based embedded storages,” Proc. 2004
International Symposium on Low Power Electronics and Design
(ISLPED’04), pp.338–343, 2004.

[3] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel
architecture for high-performance NAND flash-based storage sys-
tem,” J. Syst. Archit., vol.53, pp.644–658, Sept. 2007.

[4] S.-L. Min and E.-H. Nam, “Current trends in flash memory technol-
ogy,” Proc. Asia and South Pacific Design Automation Conference
(ASP-DAC), pp.332–333, Jan. 2006.

[5] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi,
“A high performance controller for NAND flash-based solid state
disk,” 21st IEEE Non-Volatile Semiconductor Memory Workshop
(NVSMW), pp.17–20, Feb. 2006.

[6] SATA Specification (Rev.1.0a), http://www.serialata.org
[7] http://www.samsung.com

[8] http://www.pcisig.org
[9] http://www.usb.org

[10] http://www.scsita.org
[11] http://www.fibrechannel.org
[12] Intel corporation, “Intel 965 express chipset family,” data sheet, July

2006.
[13] Intel corporation, “Intel I/O Controller Hub 8 (ICH8) family,” data

sheet, July 2006.
[14] Samsung Electronics Company, “Nand flash based SSD preliminary

specification,” data sheet, July 2007.
[15] IEEE Standard SystemC Language Reference Manual,

http://www.systemc.org
[16] L.-P. Chang and T.-W. Kuo, “An adaptive stripping architecture

for flash memory storage systems of embedded systems,” Proc.
IEEE Eighth Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pp.187–196, San Jose, USA, Sept. 2002.

[17] http://newslab.csie.ntu.edu.tw/˜flash


